goroutine和coroutine的区别
C#、Lua、Python 语言都支持 coroutine 特性。coroutine 与 goroutine 在名字上类似,都可以将函数或者语句在独立的环境中运行,但是它们之间有两点不同: goroutine 可能发生并行执行; 但 coroutine 始终顺序执行。 goroutines 意味着并行(或者可以以并行的方式部署),coroutines 一般来说不是这样的,goroutines 通过通道来通信;coroutines 通过让出和恢复操作来通信,g
吴恩达《卷积神经网络》课程笔记(1)– 卷积神经网络基础
1. Computer Vision计算机视觉是深度学习应用的主要方向之一。一般的CV问题包括以下三类: Image Classification图像分类,Object detection目标检测,Neural Style Transfer图片风格迁移 下图展示了一个Neural Style Transfer的例子: 使用传统神经网络处理计算机视觉的一个主要问题是输入层维度很大。例如一张64x64x3的图片,神经网络输入层的维度
f-gan生成对抗神经网络进阶第一级
在之前我们做始祖Gan的数学推导的时候,其实留下了一堆坑(不知道你注意到了没有哈哈)。当然,牛逼的人就是这样的,指明了一条光明大道,让人知道从哪里走,然后剩下的一些坑坑洼洼刚刚好就能帮助一些博士、硕士毕业或者一些人评副教授、教授啥的。 这篇文章介绍的f-gan就是填的其中一个坑,那就是给V(G,D)V(G,D)V(G,D)这个函数一个更加通用的描述。在始祖文章里面,这个函数是直接写出来的,虽然知道它巧妙得令人窒息,而且也确实是在算拟
YOLT:将YOLO用于卫星图像目标检测
之前作者用滑动窗口和HOG来进行船体监测,在开放水域和港湾取得了不错的成绩,但是对于不一致的复杂背景,这个方法的性能会下降。为了解决这个缺点,作者使用YOLO作为物体检测的流水线,这个方法相比于HOG提高了对背景的辨别力,并且可以快速的在不同尺度和多样传感器上进行快速检测。 Review ImageNet上的目标检测和卫星图像上的检测有以下四个方面的不同: 1.卫星图像的目标检测通常都很小(~20像素),而输入图像通常很大。
Monash call:通过生成对抗网络创造现实-GAN的过去,现在和未来
Monash call (莫纳什来电):通过生成对抗网络创造现实-GAN的过去,现在和未来 [email protected] 最近,我们已经目睹了各种工具的日益普及,这些工具可以自动创建不存在的人物,物体或场景的图像,或者通过添加它们从未拥有的品质来修改现有物体的表示。这样的解决方案的一个典型例子是FaceApp。该应用程序可以拍摄人物照片,并创建具有其他功能的人脸图像。例如,它可以添加胡须,使人看起来更老或更年轻,或添加通
『深度应用』一小时教你上手MaskRCNN·Keras开源实战(Windows&Linux)
0. 前言介绍 MaskRCNN是何凯明基于以往的faster rcnn架构提出的新的卷积网络,一举完成了object instance segmentation. 该方法在有效地目标的同时完成了高质量的语义分割。 文章的主要思路就是把原有的Faster-RCNN进行扩展,添加一个分支使用现有的检测对目标进行并行预测。 此开源代码:这是在Python 3,Keras和TensorFlow上实现Mask R-CNN。该
深度学习—RNN循环神经网络&LSTM解决长依赖问题
神经网络只能单独的处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,在我们处理某些任务时,要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。输入和输出都是等长的序列。这里使用RNN循环神经网络来处理这类问题。一、RNN循环神经网络循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出。隐藏层之间的结点是有连接的,输入不仅包括输入层的输出还包括上时刻隐藏层的输出。循环神经网络首先把所有的输入值进行
Hinton Neural Networks课程笔记2a:三种主要的神经网络框架之前向网络、循环神经网络和对称
这一节主要是介绍了三种主要的神经网络模型:前向网络、循环神经网络和对称网络 前向网络 Feed-forward Neural Networks 如果把神经元看做节点,把神经元的输出到另一个神经元的输入看做有向边,那么神经网络可以看做是一个有向图,一个有向图没有圈(circle)的神经网络就是前向网络。前向网络应用广泛,也十分经典,常见的CNN就是一个典型的前向网络;全连接网络则为相邻两层节点之间都有权重连接的前向网络。下图即为一个经
Python 第三方库 openpyxl 的安装过程
openpyxl是一个Python第三方库,用于读写Excel文件。本文提供一个完整的攻略,介绍如何安装openpyxl库。我们将提供两个示例,分别是使用openpyxl读取Excel文件和使用openpyxl写入Excel文件。 安装openpyxl库 在安装openpyxl库之前,我们需要确保已经安装了Python。可以在命令行中输入以下命令来检查Python版本: python --version 如果Python已经安装,则可以
pytorch 查看cuda 版本方式
在使用PyTorch进行深度学习开发时,需要查看CUDA版本来确定是否支持GPU加速。本文将介绍如何查看CUDA版本的方法,并演示如何在PyTorch中使用GPU加速。 查看CUDA版本的方法 方法一:使用命令行查看 可以使用以下命令在命令行中查看CUDA版本: nvcc --version 执行上述命令后,会输出CUDA版本信息,如下所示: nvcc: NVIDIA (R) Cuda compiler driver Copyright
教你两步解决conda安装pytorch时下载速度慢or超时的问题
当我们使用conda安装PyTorch时,有时会遇到下载速度慢或超时的问题。本文将介绍两个解决方案,帮助您快速解决这些问题。 解决方案一:更换清华源 清华源是国内比较稳定的镜像源之一,我们可以将conda的镜像源更换为清华源,以加速下载速度。具体步骤如下: 打开Anaconda Prompt或终端,输入以下命令: conda config --add channels https://mirrors.tuna.tsinghua.edu
python 如何查看pytorch版本
在Python中,我们可以使用PyTorch的版本信息来查看PyTorch的版本。本文将详细讲解Python如何查看PyTorch版本,并提供两个示例说明。 1. 使用torch.__version__查看PyTorch版本 在Python中,我们可以使用torch.__version__来查看PyTorch的版本。以下是使用torch.__version__查看PyTorch版本的示例代码: import torch print('
Linux下PyTorch安装教程
Linux下PyTorch安装教程 PyTorch是一个基于Python的科学计算库,主要用于深度学习和神经网络。本文将详细讲解在Linux系统下安装PyTorch的步骤,并提供两个示例说明。 1. 安装前的准备 在安装PyTorch之前,我们需要确保已经安装了Python和pip。可以使用以下命令检查是否已经安装: python --version pip --version 如果没有安装,可以使用以下命令安装: sudo apt-g
浅谈pytorch 模型 .pt, .pth, .pkl的区别及模型保存方式
在PyTorch中,我们可以使用不同的文件格式来保存模型,包括.pt、.pth和.pkl。这些文件格式之间有一些区别,本文将对它们进行详细讲解,并提供两个示例说明。 .pt和.pth文件 .pt和.pth文件是PyTorch中最常用的模型保存格式。它们都是二进制文件,可以保存模型的参数、状态和结构。.pt文件通常用于保存单个模型,而.pth文件通常用于保存多个模型,例如在训练过程中保存的多个检查点。 以下是一个示例,展示如何将模型保存为.
利用Python脚本实现自动刷网课
自动刷网课是一种自动化技术,可以帮助我们节省时间和精力。在本文中,我们将介绍如何使用Python脚本实现自动刷网课,并提供两个示例说明。 利用Python脚本实现自动刷网课的步骤 要利用Python脚本实现自动刷网课,需要完成以下几个步骤: 安装必要的Python库。 编写Python脚本,实现自动登录和自动播放网课。 运行Python脚本,开始自动刷网课。 以下是详细的步骤说明: 步骤1:安装必要的Python库 在使用Python