关键词

caffe IDE 开发环境配置

这篇博文主要记录caffe开发环境的种种。

在直接使用caffe的时候,需要对数据做格式转换。然后配置一个网络格式的描述文件即可进行训练。但是在做预测和格式转化的时候,我们需要将Caffe当作一个sdk那样来使用。

这里我主要解决配置IDE。这里我选用的是nsight,因为装好cuda之后,这个编辑器就自带了。

代码我选用caffe/examples/mnist/convert_mnist_data.cpp/

// This script converts the MNIST dataset to a lmdb (default) or
// leveldb (--backend=leveldb) format used by caffe to load data.
// Usage:
//    convert_mnist_data [FLAGS] input_image_file input_label_file
//                        output_db_file
// The MNIST dataset could be downloaded at
//    http://yann.lecun.com/exdb/mnist/

#include <gflags/gflags.h>
#include <glog/logging.h>
#include <google/protobuf/text_format.h>
#include <leveldb/db.h>
#include <leveldb/write_batch.h>
#include <lmdb.h>
#include <stdint.h>
#include <sys/stat.h>

#include <fstream>  // NOLINT(readability/streams)
#include <string>

#include <caffe/proto/caffe.pb.h>

using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

DEFINE_string(backend, "lmdb", "The backend for storing the result");

uint32_t swap_endian(uint32_t val) {
    val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF);
    return (val << 16) | (val >> 16);
}

void convert_dataset(const char* image_filename, const char* label_filename,
        const char* db_path, const string& db_backend) {
  // Open files
  std::ifstream image_file(image_filename, std::ios::in | std::ios::binary);
  std::ifstream label_file(label_filename, std::ios::in | std::ios::binary);
  CHECK(image_file) << "Unable to open file " << image_filename;
  CHECK(label_file) << "Unable to open file " << label_filename;
  // Read the magic and the meta data
  uint32_t magic;
  uint32_t num_items;
  uint32_t num_labels;
  uint32_t rows;
  uint32_t cols;

  image_file.read(reinterpret_cast<char*>(&magic), 4);
  magic = swap_endian(magic);
  CHECK_EQ(magic, 2051) << "Incorrect image file magic.";
  label_file.read(reinterpret_cast<char*>(&magic), 4);
  magic = swap_endian(magic);
  CHECK_EQ(magic, 2049) << "Incorrect label file magic.";
  image_file.read(reinterpret_cast<char*>(&num_items), 4);
  num_items = swap_endian(num_items);
  label_file.read(reinterpret_cast<char*>(&num_labels), 4);
  num_labels = swap_endian(num_labels);
  CHECK_EQ(num_items, num_labels);
  image_file.read(reinterpret_cast<char*>(&rows), 4);
  rows = swap_endian(rows);
  image_file.read(reinterpret_cast<char*>(&cols), 4);
  cols = swap_endian(cols);

  // lmdb
  MDB_env *mdb_env;
  MDB_dbi mdb_dbi;
  MDB_val mdb_key, mdb_data;
  MDB_txn *mdb_txn;
  // leveldb
  leveldb::DB* db;
  leveldb::Options options;
  options.error_if_exists = true;
  options.create_if_missing = true;
  options.write_buffer_size = 268435456;
  leveldb::WriteBatch* batch = NULL;

  // Open db
  if (db_backend == "leveldb") {  // leveldb
    LOG(INFO) << "Opening leveldb " << db_path;
    leveldb::Status status = leveldb::DB::Open(
        options, db_path, &db);
    CHECK(status.ok()) << "Failed to open leveldb " << db_path
        << ". Is it already existing?";
    batch = new leveldb::WriteBatch();
  } else if (db_backend == "lmdb") {  // lmdb
    LOG(INFO) << "Opening lmdb " << db_path;
    CHECK_EQ(mkdir(db_path, 0744), 0)
        << "mkdir " << db_path << "failed";
    CHECK_EQ(mdb_env_create(&mdb_env), MDB_SUCCESS) << "mdb_env_create failed";
    CHECK_EQ(mdb_env_set_mapsize(mdb_env, 1099511627776), MDB_SUCCESS)  // 1TB
        << "mdb_env_set_mapsize failed";
    CHECK_EQ(mdb_env_open(mdb_env, db_path, 0, 0664), MDB_SUCCESS)
        << "mdb_env_open failed";
    CHECK_EQ(mdb_txn_begin(mdb_env, NULL, 0, &mdb_txn), MDB_SUCCESS)
        << "mdb_txn_begin failed";
    CHECK_EQ(mdb_open(mdb_txn, NULL, 0, &mdb_dbi), MDB_SUCCESS)
        << "mdb_open failed. Does the lmdb already exist? ";
  } else {
    LOG(FATAL) << "Unknown db backend " << db_backend;
  }

  // Storing to db
  char label;
  char* pixels = new char[rows * cols];
  int count = 0;
  const int kMaxKeyLength = 10;
  char key_cstr[kMaxKeyLength];
  string value;

  Datum datum;
  datum.set_channels(1);
  datum.set_height(rows);
  datum.set_width(cols);
  LOG(INFO) << "A total of " << num_items << " items.";
  LOG(INFO) << "Rows: " << rows << " Cols: " << cols;
  for (int item_id = 0; item_id < num_items; ++item_id) {
    image_file.read(pixels, rows * cols);
    label_file.read(&label, 1);
    datum.set_data(pixels, rows*cols);
    datum.set_label(label);
    snprintf(key_cstr, kMaxKeyLength, "%08d", item_id);
    datum.SerializeToString(&value);
    string keystr(key_cstr);

    // Put in db
    if (db_backend == "leveldb") {  // leveldb
      batch->Put(keystr, value);
    } else if (db_backend == "lmdb") {  // lmdb
      mdb_data.mv_size = value.size();
      mdb_data.mv_data = reinterpret_cast<void*>(&value[0]);
      mdb_key.mv_size = keystr.size();
      mdb_key.mv_data = reinterpret_cast<void*>(&keystr[0]);
      CHECK_EQ(mdb_put(mdb_txn, mdb_dbi, &mdb_key, &mdb_data, 0), MDB_SUCCESS)
          << "mdb_put failed";
    } else {
      LOG(FATAL) << "Unknown db backend " << db_backend;
    }

    if (++count % 1000 == 0) {
      // Commit txn
      if (db_backend == "leveldb") {  // leveldb
        db->Write(leveldb::WriteOptions(), batch);
        delete batch;
        batch = new leveldb::WriteBatch();
      } else if (db_backend == "lmdb") {  // lmdb
        CHECK_EQ(mdb_txn_commit(mdb_txn), MDB_SUCCESS)
            << "mdb_txn_commit failed";
        CHECK_EQ(mdb_txn_begin(mdb_env, NULL, 0, &mdb_txn), MDB_SUCCESS)
            << "mdb_txn_begin failed";
      } else {
        LOG(FATAL) << "Unknown db backend " << db_backend;
      }
    }
  }
  // write the last batch
  if (count % 1000 != 0) {
    if (db_backend == "leveldb") {  // leveldb
      db->Write(leveldb::WriteOptions(), batch);
      delete batch;
      delete db;
    } else if (db_backend == "lmdb") {  // lmdb
      CHECK_EQ(mdb_txn_commit(mdb_txn), MDB_SUCCESS) << "mdb_txn_commit failed";
      mdb_close(mdb_env, mdb_dbi);
      mdb_env_close(mdb_env);
    } else {
      LOG(FATAL) << "Unknown db backend " << db_backend;
    }
    LOG(ERROR) << "Processed " << count << " files.";
  }
  delete pixels;
}

int main(int argc, char** argv) {
#ifndef GFLAGS_GFLAGS_H_
  namespace gflags = google;
#endif

  gflags::SetUsageMessage("This script converts the MNIST dataset to\n"
        "the lmdb/leveldb format used by Caffe to load data.\n"
        "Usage:\n"
        "    convert_mnist_data [FLAGS] input_image_file input_label_file "
        "output_db_file\n"
        "The MNIST dataset could be downloaded at\n"
        "    http://yann.lecun.com/exdb/mnist/\n"
        "You should gunzip them after downloading,"
        "or directly use data/mnist/get_mnist.sh\n");
  gflags::ParseCommandLineFlags(&argc, &argv, true);

  const string& db_backend = FLAGS_backend;

  if (argc != 4) {
    gflags::ShowUsageWithFlagsRestrict(argv[0],
        "examples/mnist/convert_mnist_data");
  } else {
    google::InitGoogleLogging(argv[0]);
    convert_dataset(argv[1], argv[2], argv[3], db_backend);
  }
  return 0;
}

在编译caffe时,使用一下make install,这样会生成一个install 目录,目录底下有include lib tools三个目录

现在我们来配置nsight

properties->settings->c++ includes->:

(caffe根目录换成你自己的)

/home/zhxfl/cuda-workspace/caffe/build/install/include
/home/zhxfl/cuda-workspace/caffe/build/src/
/usr/local/cuda/include

properties->build->settings->GCC C++ Compiler->Miscellaneous->选上-fPIC选项

properties->build->settings->GCC C++ Linker->Libraries-> 填上如下依赖的动态库。

caffe
proto
caffe_cu
leveldb
snappy
protobuf
gflags
glog
lmdb

properties->build->settings->GCC C++ Linker->Libraries search path(-L) -> 填上如下依赖的动态库目录。

/usr/local/lib
/home/zhxfl/cuda-workspace/caffe/build/install/lib

本文链接:http://task.lmcjl.com/news/12309.html

展开阅读全文