使用顺序表实现广义表结构,不仅需要操作 n 维数组(例如 {1,{2,{3,4}}} 就需要使用三维数组存储),还会造成存储空间的浪费。
使用链表存储广义表,首先需要确定链表中节点的结构。由于广义表中可同时存储原子和子表两种形式的数据,因此链表节点的结构也有两种,如图 1 所示:
图 1 广义表节点的两种类型
typedef struct GLNode{ int tag;//标志域 union{ char atom;//原子结点的值域 struct{ struct GLNode * hp,*tp; }ptr;//子表结点的指针域,hp指向表头;tp指向表尾 }subNode; }*Glist;这里用到了 union 共用体,因为同一时间此节点不是原子节点就是子表节点,当表示原子节点时,就使用 atom 变量;反之则使用 ptr 结构体。
图 2 广义表 {a,{b,c,d}} 的结构示意图
Glist creatGlist(Glist C) { //广义表C C = (Glist)malloc(sizeof(Glist)); C->tag = 1; //表头原子‘a’ C->subNode.ptr.hp = (Glist)malloc(sizeof(Glist)); C->subNode.ptr.hp->tag = 0; C->subNode.ptr.hp->subNode.atom = 'a'; //表尾子表(b,c,d),是一个整体 C->subNode.ptr.tp = (Glist)malloc(sizeof(Glist)); C->subNode.ptr.tp->tag = 1; C->subNode.ptr.tp->subNode.ptr.hp = (Glist)malloc(sizeof(Glist)); C->subNode.ptr.tp->subNode.ptr.tp = NULL; //开始存放下一个数据元素(b,c,d),表头为‘b’,表尾为(c,d) C->subNode.ptr.tp->subNode.ptr.hp->tag = 1; C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.hp = (Glist)malloc(sizeof(Glist)); C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.hp->tag = 0; C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.hp->subNode.atom = 'b'; C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp = (Glist)malloc(sizeof(Glist)); //存放子表(c,d),表头为c,表尾为d C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->tag = 1; C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->subNode.ptr.hp = (Glist)malloc(sizeof(Glist)); C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->subNode.ptr.hp->tag = 0; C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->subNode.ptr.hp->subNode.atom = 'c'; C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->subNode.ptr.tp = (Glist)malloc(sizeof(Glist)); //存放表尾d C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->subNode.ptr.tp->tag = 1; C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->subNode.ptr.tp->subNode.ptr.hp = (Glist)malloc(sizeof(Glist)); C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->subNode.ptr.tp->subNode.ptr.hp->tag = 0; C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->subNode.ptr.tp->subNode.ptr.hp->subNode.atom = 'd'; C->subNode.ptr.tp->subNode.ptr.hp->subNode.ptr.tp->subNode.ptr.tp->subNode.ptr.tp = NULL; return C; }
图 3 广义表的另一套节点结构
typedef struct GNode { int tag;//标志域 union { int atom;//原子结点的值域 struct GNode* hp;//子表结点的指针域,hp指向表头 }subNode; struct GNode* tp;//这里的tp相当于链表的next指针,用于指向下一个数据元素 }GLNode, *Glist;采用图 3 中的节点结构存储广义表 {a,{b,c,d}} 的示意图如图 4 所示:
图 4 广义表 {a,{b,c,d}} 的存储结构示意图
Glist creatGlist(Glist C) { C = (Glist)malloc(sizeof(GLNode)); C->tag = 1; C->subNode.hp = (Glist)malloc(sizeof(GLNode)); C->tp = NULL; //表头原子a C->subNode.hp->tag = 0; C->subNode.hp->subNode.atom = 'a'; C->subNode.hp->tp = (Glist)malloc(sizeof(GLNode)); C->subNode.hp->tp->tag = 1; C->subNode.hp->tp->subNode.hp = (Glist)malloc(sizeof(GLNode)); C->subNode.hp->tp->tp = NULL; //原子b C->subNode.hp->tp->subNode.hp->tag = 0; C->subNode.hp->tp->subNode.hp->subNode.atom = 'b'; C->subNode.hp->tp->subNode.hp->tp = (Glist)malloc(sizeof(GLNode)); //原子c C->subNode.hp->tp->subNode.hp->tp->tag = 0; C->subNode.hp->tp->subNode.hp->tp->subNode.atom = 'c'; C->subNode.hp->tp->subNode.hp->tp->tp = (Glist)malloc(sizeof(GLNode)); //原子d C->subNode.hp->tp->subNode.hp->tp->tp->tag = 0; C->subNode.hp->tp->subNode.hp->tp->tp->subNode.atom = 'd'; C->subNode.hp->tp->subNode.hp->tp->tp->tp = NULL; return C; }需要初学者注意的是,无论采用以上哪一种节点结构存储广义表,都不要破坏广义表中各数据元素之间的并列关系。拿 {a,{b,c,d}} 来说,原子 a 和子表 {b,c,d} 是并列的,而在子表 {b,c,d} 中原子 b、c、d 是并列的。
本文链接:http://task.lmcjl.com/news/6515.html