This is a list of awesome articles about object detection.
from: 引自GitHub
R-CNN
Fast R-CNN
Faster R-CNN
Light-Head R-CNN
Cascade R-CNN
SPP-Net
YOLO
YOLOv2
YOLOv3
YOLT
SSD
DSSD
FSSD
ESSD
MDSSD
Pelee
Fire SSD
R-FCN
FPN
DSOD
RetinaNet
MegNet
RefineNet
DetNet
SSOD
3D Object Detection
ZSD(Zero-Shot Object Detection)
OSD(One-Shot object Detection)
Other
Based on handong1587’s github(https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html)
Rich feature hierarchies for accurate object detection and semantic segmentation
intro: R-CNN
arxiv: http://arxiv.org/abs/1311.2524
supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
github: https://github.com/rbgirshick/rcnn
notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
caffe-pr(“Make R-CNN the Caffe detection example”): https://github.com/BVLC/caffe/pull/482
arxiv: http://arxiv.org/abs/1504.08083
slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
github: https://github.com/rbgirshick/fast-rcnn
github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco
webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
notes: http://blog.csdn.net/linj_m/article/details/48930179
github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn
github: https://github.com/mahyarnajibi/fast-rcnn-torch
github: https://github.com/apple2373/chainer-simple-fast-rnn
github: https://github.com/zplizzi/tensorflow-fast-rcnn
intro: CVPR 2017
arxiv: https://arxiv.org/abs/1704.03414
paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf
github(Caffe): https://github.com/xiaolonw/adversarial-frcnn
intro: NIPS 2015
arxiv: http://arxiv.org/abs/1506.01497
gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region
slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
github(Caffe): https://github.com/rbgirshick/py-faster-rcnn
github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/faster_rcnn
github(PyTorch–recommend): https://github.com//jwyang/faster-rcnn.pytorch
github: https://github.com/mitmul/chainer-faster-rcnn
github(Torch):: https://github.com/andreaskoepf/faster-rcnn.torch
github(Torch):: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
github(TensorFlow): https://github.com/smallcorgi/Faster-RCNN_TF
github(TensorFlow): https://github.com/CharlesShang/TFFRCNN
github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
github(Keras): https://github.com/yhenon/keras-frcnn
github: https://github.com/Eniac-Xie/faster-rcnn-resnet
github(C++): https://github.com/D-X-Y/caffe-faster-rcnn/tree/dev
intro: BMVC 2015
arxiv: http://arxiv.org/abs/1506.06981
github: https://github.com/dmlc/mxnet/tree/master/example/rcnn
intro: ECCV 2016. Carnegie Mellon University
paper: http://abhinavsh.info/context_priming_feedback.pdf
poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf
intro: Technical Report, 3 pages. CMU
arxiv: https://arxiv.org/abs/1702.02138
github: https://github.com/endernewton/tf-faster-rcnn
intro: North Carolina State University & Alibaba
keywords: AND-OR Graph (AOG)
arxiv: https://arxiv.org/abs/1711.05226
intro: Tsinghua University & Megvii Inc
arxiv: https://arxiv.org/abs/1711.07264
github(offical): https://github.com/zengarden/light_head_rcnn
github: https://github.com/terrychenism/Deformable-ConvNets/blob/master/rfcn/symbols/resnet_v1_101_rfcn_light.py#L784
arxiv: https://arxiv.org/abs/1712.00726
github: https://github.com/zhaoweicai/cascade-rcnn
intro: ECCV 2014 / TPAMI 2015
arxiv: http://arxiv.org/abs/1406.4729
github: https://github.com/ShaoqingRen/SPP_net
notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/
intro: PAMI 2016
intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
project page: http://www.ee.cuhk.edu.hk/˜wlouyang/projects/imagenetDeepId/index.html
arxiv: http://arxiv.org/abs/1412.5661
intro: ICLR 2015
arxiv: http://arxiv.org/abs/1412.6856
paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
slides: http://places.csail.mit.edu/slide_iclr2015.pdf
intro: CVPR 2015
project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html
arxiv: https://arxiv.org/abs/1502.04275
github: https://github.com/YknZhu/segDeepM
intro: TPAMI 2015
keywords: NoC
arxiv: http://arxiv.org/abs/1504.06066
arxiv: http://arxiv.org/abs/1504.03293
slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
github: https://github.com/YutingZhang/fgs-obj
keywords: DeepBox
arxiv: http://arxiv.org/abs/1505.02146
github: https://github.com/weichengkuo/DeepBox
You Only Look Once: Unified, Real-Time Object Detection
arxiv: http://arxiv.org/abs/1506.02640
code: https://pjreddie.com/darknet/yolov1/
github: https://github.com/pjreddie/darknet
blog: https://pjreddie.com/darknet/yolov1/
slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p
reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
github: https://github.com/gliese581gg/YOLO_tensorflow
github: https://github.com/xingwangsfu/caffe-yolo
github: https://github.com/frankzhangrui/Darknet-Yolo
github: https://github.com/BriSkyHekun/py-darknet-yolo
github: https://github.com/tommy-qichang/yolo.torch
github: https://github.com/frischzenger/yolo-windows
github: https://github.com/AlexeyAB/yolo-windows
github: https://github.com/nilboy/tensorflow-yolo
blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp
github: https://github.com/thtrieu/darkflow
intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
blog: http://guanghan.info/blog/en/my-works/train-yolo/
github: https://github.com/Guanghan/darknet
intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.
blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/
github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph
intro: Real-time object detection on Android using the YOLO network with TensorFlow
github: https://github.com/natanielruiz/android-yolo
blog: https://sriraghu.com/2017/07/12/computer-vision-in-ios-object-detection/
github:https://github.com/r4ghu/iOS-CoreML-Yolo
arxiv: https://arxiv.org/abs/1612.08242
code: http://pjreddie.com/yolo9000/ https://pjreddie.com/darknet/yolov2/
github(Chainer): https://github.com/leetenki/YOLOv2
github(Keras): https://github.com/allanzelener/YAD2K
github(PyTorch): https://github.com/longcw/yolo2-pytorch
github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
github(Windows): https://github.com/AlexeyAB/darknet
github: https://github.com/choasUp/caffe-yolo9000
github: https://github.com/philipperemy/yolo-9000
github(TensorFlow): https://github.com/KOD-Chen/YOLOv2-Tensorflow
github(Keras): https://github.com/yhcc/yolo2
github(Keras): https://github.com/experiencor/keras-yolo2
github(TensorFlow): https://github.com/WojciechMormul/yolo2
intro: Auxilary scripts to work with (YOLO) darknet deep learning famework. AKA -> How to generate YOLO anchors?
github: https://github.com/Jumabek/darknet_scripts
github: https://github.com/AlexeyAB/Yolo_mark
https://github.com//explosion/lightnet
intro: Bounding box labeler tool to generate the training data in the format YOLO v2 requires.
github: https://github.com/Cartucho/yolo-boundingbox-labeler-GUI
intro: LRM is the first hard example mining strategy which could fit YOLOv2 perfectly and make it better applied in series of real scenarios where both real-time rates and accurate detection are strongly demanded.
arxiv: https://arxiv.org/abs/1804.04606
intro: faster than Tiny-Yolo-v2
arxiv: https://arxiv.org/abs/1805.06361
intro: YOLE–Object Detection in Neuromorphic Cameras
arxiv:https://arxiv.org/abs/1805.07931
intro: a person detector on n fish-eye images of indoor scenes(NIPS 2018)
arxiv:https://arxiv.org/abs/1805.08503
datasets:https://gitlab.com/omnidetector/omnidetector
arxiv:https://arxiv.org/abs/1804.02767
paper:https://pjreddie.com/media/files/papers/YOLOv3.pdf
code: https://pjreddie.com/darknet/yolo/
github(Official):https://github.com/pjreddie/darknet
github:https://github.com/experiencor/keras-yolo3
github:https://github.com/qqwweee/keras-yolo3
github:https://github.com/marvis/pytorch-yolo3
github:https://github.com/ayooshkathuria/pytorch-yolo-v3
github:https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch
github:https://github.com/eriklindernoren/PyTorch-YOLOv3
intro: Small Object Detection
arxiv:https://arxiv.org/abs/1805.09512
github:https://github.com/avanetten/yolt
intro: ECCV 2016 Oral
arxiv: http://arxiv.org/abs/1512.02325
paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
slides: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf
github(Official): https://github.com/weiliu89/caffe/tree/ssd
video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
github: https://github.com/zhreshold/mxnet-ssd
github: https://github.com/zhreshold/mxnet-ssd.cpp
github: https://github.com/rykov8/ssd_keras
github: https://github.com/balancap/SSD-Tensorflow
github: https://github.com/amdegroot/ssd.pytorch
github(Caffe): https://github.com/chuanqi305/MobileNet-SSD
What’s the diffience in performance between this new code you pushed and the previous code? #327
https://github.com/weiliu89/caffe/issues/327
intro: UNC Chapel Hill & Amazon Inc
arxiv: https://arxiv.org/abs/1701.06659
github: https://github.com/chengyangfu/caffe/tree/dssd
github: https://github.com/MTCloudVision/mxnet-dssd
demo: http://120.52.72.53/www.cs.unc.edu/c3pr90ntc0td/~cyfu/dssd_lalaland.mp4
intro: rainbow SSD (R-SSD)
arxiv: https://arxiv.org/abs/1705.09587
keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)
arxiv: https://arxiv.org/abs/1707.08682
https://arxiv.org/abs/1709.05054
https://arxiv.org/abs/1712.00960
intro: WeaveNet
keywords: fuse multi-scale information
arxiv: https://arxiv.org/abs/1712.03149
https://arxiv.org/abs/1801.05918
https://arxiv.org/abs/1802.06488
arxiv: https://arxiv.org/abs/1805.07009
https://github.com/Robert-JunWang/Pelee
intro: (ICLR 2018 workshop track)
arxiv: https://arxiv.org/abs/1804.06882
github: https://github.com/Robert-JunWang/Pelee
intro:low cost, fast speed and high mAP on factor edge computing devices
arxiv:https://arxiv.org/abs/1806.05363
arxiv: http://arxiv.org/abs/1605.06409
github: https://github.com/daijifeng001/R-FCN
github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/rfcn
github: https://github.com/Orpine/py-R-FCN
github: https://github.com/PureDiors/pytorch_RFCN
github: https://github.com/bharatsingh430/py-R-FCN-multiGPU
github: https://github.com/xdever/RFCN-tensorflow
https://arxiv.org/abs/1712.01802
arxiv: http://arxiv.org/abs/1607.05066
intro: Facebook AI Research
arxiv: https://arxiv.org/abs/1612.03144
arxiv: https://arxiv.org/abs/1612.06704
intro: CMU & UC Berkeley & Google Research
arxiv: https://arxiv.org/abs/1612.06851
intro: Inha University
arxiv: https://arxiv.org/abs/1702.01243
intro: University of Maryland & Mitsubishi Electric Research Laboratories
arxiv: https://arxiv.org/abs/1702.01478
keykwords: CC-Net
intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
arxiv: https://arxiv.org/abs/1702.07054
intro: ICCV 2017 (poster)
arxiv: https://arxiv.org/abs/1703.10295
intro: CVPR 2017
arxiv: https://arxiv.org/abs/1704.03944
arxiv: https://arxiv.org/abs/1704.04224
intro: CVPR 2017. SenseTime
keywords: Recurrent Rolling Convolution (RRC)
arxiv: https://arxiv.org/abs/1704.05776
github: https://github.com/xiaohaoChen/rrc_detection
https://arxiv.org/abs/1704.05775
intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc
arxiv: https://arxiv.org/abs/1705.05922
intro: Point Linking Network (PLN)
arxiv: https://arxiv.org/abs/1706.03646
https://arxiv.org/abs/1706.05274
https://arxiv.org/abs/1706.08249
https://arxiv.org/abs/1706.09180
https://arxiv.org/abs/1706.10217
https://arxiv.org/abs/1707.01395
intro: CVPR 2017
arxiv: https://arxiv.org/abs/1707.01691
github: https://github.com/taokong/RON
intro: CVPR 2017. SenseTime & Beihang University
paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Mimicking_Very_Efficient_CVPR_2017_paper.pdf
https://arxiv.org/abs/1707.05031
intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC
arxiv: https://arxiv.org/abs/1707.06175
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1707.06399
intro: ICCV 2017
keywords: Recurrent Scale Approximation (RSA)
arxiv: https://arxiv.org/abs/1707.09531
github: https://github.com/sciencefans/RSA-for-object-detection
intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China
arxiv: https://arxiv.org/abs/1708.01241
github: https://github.com/szq0214/DSOD
github:https://github.com/Windaway/DSOD-Tensorflow
github:https://github.com/chenyuntc/dsod.pytorch
arxiv:https://arxiv.org/abs/1712.00886
github:https://github.com/szq0214/GRP-DSOD
intro: ICCV 2017 Best student paper award. Facebook AI Research
keywords: RetinaNet
arxiv: https://arxiv.org/abs/1708.02002
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1708.02863
intro: ICCV 2017. Inria
arxiv: https://arxiv.org/abs/1708.06977
https://arxiv.org/abs/1709.04347
https://arxiv.org/abs/1709.05788
https://arxiv.org/abs/1711.05187
intro: NTU, Singapore & Amazon
keywords: multi-instance multi-label domain adaption learning framework
arxiv: https://arxiv.org/abs/1711.05954
intro: Peking University & Tsinghua University & Megvii Inc
arxiv: https://arxiv.org/abs/1711.07240
intro: RFBNet
arxiv: https://arxiv.org/abs/1711.07767
github: https://github.com//ruinmessi/RFBNet
arxiv: https://arxiv.org/abs/1711.08189
github: https://github.com/bharatsingh430/snip
https://arxiv.org/abs/1711.08879
arxiv: https://arxiv.org/abs/1711.09405
github: https://github.com/liulei01/DRBox
intro: Microsoft AI & Research Munich
arxiv: https://arxiv.org/abs/1711.09822
arxiv: https://arxiv.org/abs/1712.00886
github: https://github.com/szq0214/GRP-DSOD
keywords: region selection network, gating network
arxiv: https://arxiv.org/abs/1712.02408
intro: IEEE/CAA Journal of Automatica Sinica
arxiv: https://arxiv.org/abs/1712.08470
keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
arxiv: https://arxiv.org/abs/1712.08832
intro: Tsinghua University & JD Group
arxiv: https://arxiv.org/abs/1801.01051
arxiv: https://arxiv.org/abs/1801.05124
https://arxiv.org/abs/1802.03934
intro: AAAI 2018
arxiv: https://arxiv.org/abs/1803.01529
intro: CVPR 2018. ETH Zurich & ESAT/PSI
arxiv: https://arxiv.org/abs/1803.03243
https://arxiv.org/abs/1803.05858
https://arxiv.org/abs/1803.06799
intro: Peking University & MSRA
arxiv: https://arxiv.org/abs/1803.07066
intro: Singapore Management University & Zhejiang University
arxiv: https://arxiv.org/abs/1803.08208
intro: University of Tokyo & National Institute of Informatics, Japan
arxiv: https://arxiv.org/abs/1803.08670
https://arxiv.org/abs/1803.11316
https://arxiv.org/abs/1804.01077
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1804.00428
github: https://github.com/Hwang64/MLKP
intro: National University of Defense Technology
arxiv: https://arxiv.org/abs/1804.04606
https://arxiv.org/abs/1804.05810
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1711.06897
github: https://github.com/sfzhang15/RefineDet
github: https://github.com/lzx1413/PytorchSSD
github: https://github.com/ddlee96/RefineDet_mxnet
github: https://github.com/MTCloudVision/RefineDet-Mxnet
intro: Tsinghua University & Face++
arxiv: https://arxiv.org/abs/1804.06215
Google Brain
arxiv:https://arxiv.org/abs/1806.03370
arxiv: https://arxiv.org/abs/1805.04902
github: https://github.com/CPFL/Autoware/tree/feature/cnn_lidar_detection
intro: Australian National University
keywords: YOLO
arxiv: https://arxiv.org/abs/1803.07113
arxiv: https://arxiv.org/abs/1804.04340
arxiv: https://arxiv.org/abs/1803.06049
arxiv: https://arxiv.org/abs/1805.06157
RepMet: Representative-based metric learning for classification and one-shot object detection
intro: IBM Research AI
arxiv:https://arxiv.org/abs/1806.04728
github: TODO
arxiv: https://arxiv.org/abs/1807.00980
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1711.11575
github:https://github.com/msracver/Relation-Networks-for-Object-Detection
Tsinghua University1 & The Chinese University of Hong Kong2 &SenseTime3
arxiv: https://arxiv.org/abs/1805.02152
intro: CVPR 2018 Camera Ready
arxiv: https://arxiv.org/abs/1805.04953
arxiv:https://arxiv.org/abs/1805.09300
github:https://github.com/mahyarnajibi/SNIPER
intro: the robustness of object detection under the presence of missing annotations
arxiv:https://arxiv.org/abs/1806.06986
intro: TNNLS 2018
arxiv:https://arxiv.org/abs/1807.00147
code: http://kezewang.com/codes/ASM_ver1.zip
本文链接:http://task.lmcjl.com/news/12091.html