在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层、卷积操作层、pooling层、非线性变换层、内积运算层、归一化层、损失计算层等;本篇主要介绍卷积层
下面首先给出卷积层的结构设置的一个小例子(定义在.prototxt文件中)
layer { name: "conv1" // 该层的名字 type: "Convolution" // 该层的类型,具体地,可选的类型有:Convolution、 bottom: "data" // 该层的输入数据Blob的名字 top: "conv1" // 该层的输出数据Blob的名字 // 该层的权值和偏置相关参数 param { lr_mult: 1 //weight的学习率 } param { lr_mult: 2 // bias的学习率 } // 该层(卷积层)的卷积运算相关的参数 convolution_param { num_output: 20 kernel_size: 5 stride: 1 weight_filler { type: "xavier" // weights初始化方法 } bias_filler { type: "constant" // bias初始化方法 } } }
注:在caffe的原始proto文件中,关于卷积层的参数ConvolutionPraram定义如下:
message ConvolutionParameter { optional uint32 num_output = 1; // The number of outputs for the layer optional bool bias_term = 2 [default = true]; // whether to have bias terms // Pad, kernel size, and stride are all given as a single value for equal dimensions in all spatial dimensions, or once per spatial dimension. repeated uint32 pad = 3; // The padding size; defaults to 0 repeated uint32 kernel_size = 4; // The kernel size repeated uint32 stride = 6; // The stride; defaults to 1 // Factor used to dilate the kernel, (implicitly) zero-filling the resulting holes. (Kernel dilation is sometimes referred to by its use in the algorithme à trous from Holschneider et al. 1987.) repeated uint32 dilation = 18; // The dilation; defaults to 1 // For 2D convolution only, the *_h and *_w versions may also be used to specify both spatial dimensions. optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only) optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only) optional uint32 kernel_h = 11; // The kernel height (2D only) optional uint32 kernel_w = 12; // The kernel width (2D only) optional uint32 stride_h = 13; // The stride height (2D only) optional uint32 stride_w = 14; // The stride width (2D only) optional uint32 group = 5 [default = 1]; // The group size for group conv optional FillerParameter weight_filler = 7; // The filler for the weight optional FillerParameter bias_filler = 8; // The filler for the bias enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 15 [default = DEFAULT]; // The axis to interpret as "channels" when performing convolution. // Preceding dimensions are treated as independent inputs; // succeeding dimensions are treated as "spatial". // With (N, C, H, W) inputs, and axis == 1 (the default), we perform // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for // groups g>1) filters across the spatial axes (H, W) of the input. // With (N, C, D, H, W) inputs, and axis == 1, we perform // N independent 3D convolutions, sliding (C/g)-channels // filters across the spatial axes (D, H, W) of the input. optional int32 axis = 16 [default = 1]; // Whether to force use of the general ND convolution, even if a specific // implementation for blobs of the appropriate number of spatial dimensions // is available. (Currently, there is only a 2D-specific convolution // implementation; for input blobs with num_axes != 2, this option is // ignored and the ND implementation will be used.) optional bool force_nd_im2col = 17 [default = false]; }
接下来,分别对卷积层的相关参数进行说明
(根据卷积层的定义,它的学习参数应该为filter的取值和bias的取值,其他的相关参数都为hyper-paramers,在定义模型时是要给出的)
放置在param{}中
该系数用来控制学习率,在进行训练过程中,该层参数以该系数乘solver.prototxt配置文件中的base_lr的值为学习率
即学习率=lr_mult*base_lr
如果该层在结构配置文件中有两个lr_mult,则第一个表示fitler的权值学习率系数,第二个表示偏执项的学习率系数(一般情况下,偏执项的学习率系数是权值学习率系数的两倍)
放置在convoluytion_param{}中
该部分对卷积层的其他参数进行设置,有些参数为必须设置,有些参数为可选(因为可以直接使用默认值)
num_output:该卷积层的filter个数
stride:filter的步长,默认值为1
本文链接:http://task.lmcjl.com/news/12692.html