关键词

Pytorch快速入门及在线体验

本文搭配了Pytorch在线环境,可以直接在线体验。

1.Pytorch简介

Pytorch是Facebook 的 AI 研究团队发布了一个基于 Python的科学计算包,旨在服务两类场合:

  • 替代numpy发挥GPU潜能(在线环境暂时不支持GPU)
  • 一个提供了高度灵活性和效率的深度学习实验性平台

2.Pytorch特点及优势

2.1 Pytorch特点

  • PyTorch 提供了运行在 GPU/CPU 之上、基础的张量操作库;
  • 可以内置的神经网络库;
  • 提供模型训练功能;
  • 支持共享内存的多进程并发(multiprocessing )库等;

2.2 Pytorch特点

处于机器学习第一大语言 Python 的生态圈之中,使得开发者能使用广大的 Python 库和软件;如 NumPy、SciPy 和 Cython(为了速度把 Python 编译成 C 语言);

(最大优势)改进现有的神经网络,提供了更快速的方法——不需要从头重新构建整个网络,这是由于 PyTorch 采用了动态计算图(dynamic computational graph)结构,而不是大多数开源框架(TensorFlow、Caffe、CNTK、Theano 等)采用的静态计算图;

提供工具包,如torch 、torch.nn、torch.optim等;

3.Pytorch常用工具包

  • torch :类似 NumPy 的张量库,强 GPU 支持 ;
  • torch.autograd :基于 tape 的自动区别库,支持 torch 之中的所有可区分张量运行;
  • torch.nn :为最大化灵活性未涉及、与 autograd 深度整合的神经网络库;
  • torch.optim:与 torch.nn 一起使用的优化包,包含 SGD、RMSProp、LBFGS、Adam 等标准优化方式;
  • torch.multiprocessing: python 多进程并发,进程之间 torch Tensors 的内存共享;
  • torch.utils:数据载入器。具有训练器和其他便利功能;
  • torch.legacy(.nn/.optim) :处于向后兼容性考虑,从 Torch 移植来的 legacy 代码;

4.tensor的创建

  • 导入pytorch的包 import torch
  • jupyter notebook
import torch
#创建一个5*3的随机矩阵并显示它(Shift+Enter)
x=torch.rand(5,3)
x

5.tensor的运算

y=torch.ones(5,3)
#创建一个5*3的全是1矩阵并显示它
y
#计算两个矩阵相加(注意尺寸要一模一样)
z=x+y
z
#矩阵乘法,矩阵转置
q=x.mm(y.t())

所有Numpy上面关于ndarray的运算全部可以应用于tensor

有关tensor的运算参考 http://pytorch.org/docs/master/tensors.html

  • 从numpy到tensor的转换:torch.from_numpy(a)
  • 从tensor到numpy的转换:a.numpy()
  • tensor与numpy的最大不同:tensor可以在GPU上运算
  • 转到gpu上运算(x.cpu()转成cpu)
if torch.cuda.is_available():
 x=x.cuda()
 y=y.cuda()
 print(x+y)

6.Numpy桥

将Torch的Tensor和numpy的array相互转换。注意Torch的Tensor和numpy的array会共享他们的存储空间,修改一个会导致另外的一个也被修改。

# 此处演示tensor和numpy数据结构的相互转换
a = torch.ones(5)
b = a.numpy()

# 此处演示当修改numpy数组之后,与之相关联的tensor也会相应的被修改
a.add_(1)
print(a)
print(b)

# 将numpy的Array转换为torch的Tensor
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)

# 另外除了CharTensor之外,所有的tensor都可以在CPU运算和GPU预算之间相互转换
# 使用CUDA函数来将Tensor移动到GPU上
# 当CUDA可用时会进行GPU的运算
if torch.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    x + y

7.动态计算图(Dynamic Computation Graph)

  • 是pytorch的最主要特征
  • 让计算模型更灵活,复杂
  • 让反向传播算法随时进行

7.1自动微分变量

gradient梯度,传播的就是梯度

定义一个自动微分变量

from torch.autograd  import Variable
#Variable:自动微分变量
x=Variable(torch.ones(2,2),requires_grad=True)
#把一个2*2的张量转变成微分的变量(添加节点,构造计算图)
x

y=x+2
y.creator
#y的父节点

z=torch.mean(y*y)
z.data

与tensor不同之处:记录下所有的计算路径,在内存中构造计算图

7.2多层运算

z=m((x+2)*(x+2))

一个多层神经网络

计算梯度:求导

z.backward()
#z对x的偏导
#只有叶节点可以算grad。只有x有grad信息,因为它没有父节点
print(z.grad)
print(y.grad)
print(x.grad)

7.3更疯狂的函数依赖

s=Variable(torch.FloatTensor([[0.01,0.02]]),requires_grad=True)
x=Variable(torch.ones(2,2),requires_grad=True)
for i in range(10):
  s=s.mm(x)
  #赋值的操作会多一个新节点出来
z=torch.mean(s)

#backward()求导计算
z.backward()
print(x.grad)
print(s.grad)

8.神经网络

用 torch.nn 包可以进行神经网络的构建,点击实验楼开源软件库的教程:Pytorch快速上手/在线实验室即可马上查看并在线体验了;

  • 你也可以在线体验其他开源软件:实验楼软件库
  • 如果你对任何开源软件感兴趣,欢迎在下面留言,也欢迎提交你熟悉的开源软件。提交方法:软件库使用方法

本文链接:http://task.lmcjl.com/news/6030.html

展开阅读全文