import random
random.randint(a, b)
返回一个随机整数 N,范围是:a <= N <= brandom.choice("ilovefishc")
从 "ilovefishc" 这个字符串中随机选出一个字符。
编写一个双色球的开奖模拟程序
import random
red = random.sample(range(1, 34), 6)
blue = random.randint(1, 16)
print("开奖结果是:", *red)
print("特别号码是:", blue)
至于 *red
,其实大家写 red
也是 OK 的,就是显示结果会多一个 “方框”:
它其实是一个 “解包” 的操作,就是将框框里面的东西拿出来的意思。
>>> print("开奖结果是:", red)
开奖结果是: [17, 24, 10, 18, 5, 6]
import random
counts = int(input("请输入抛硬币的次数:"))
i = 0
print("开始抛硬币实验:")
while i < counts:
# 生成1到10的一个随机数
num = random.randint(1, 10)
# 如果随机数可以被2整除,则代表正面,否则代表反面
# num是随机的,所以正面和反面的概率也是随机的
if num % 2:
print("正面", end=" ")
else:
print("反面", end=" ")
i += 1
random.choice([True, False])
来生成一个随机的布尔值,而不是使用random.randint(1, 10)
和取余数的方法。for
循环来遍历抛硬币的次数,而不是使用while
循环和计数器。这样可以避免出现无限循环的风险,也可以让代码更清晰。print()
函数的sep
参数来指定输出的分隔符,而不是在每个字符串后面加上空格。这样可以让代码更简洁,也可以方便地修改分隔符。import random
counts = int(input("请输入抛硬币的次数:"))
print("开始抛硬币实验:")
for i in range(counts):
# 生成一个随机的布尔值
num = random.choice([True, False])
# 如果布尔值为真,则代表正面,否则代表反面
if num:
print("正面", end="")
else:
print("反面", end="")
# 使用逗号作为分隔符,sep和end都没有数值
print(",", sep="", end="")
# 输出换行符
print()
try...except
语句来处理可能出现的异常,比如输入的不是一个整数,或者输入的是一个负数。f-string
来格式化输出的字符串,而不是使用+
或者,
来拼接字符串。可以让代码更简洁,也可以方便地插入变量或者表达式。list comprehension
来生成一个包含所有抛硬币结果的列表,而不是在循环中逐个输出。可以代码更高效,也可以方便地对结果进行分析。import random
while True:
try:
num_flips = int(input("请输入抛硬币的次数:"))
if num_flips <= 0:
raise ValueError("输入的次数必须是正整数")
break
except ValueError as e:
print("输入的不是一个正整数,请重新输入")
print(f"错误信息:{str(e)}\n")
print(f"开始抛{num_flips}次硬币实验:")
results = [random.choice(["正面", "反面"]) for _ in range(num_flips)]
# results = ["正面" if random.choice([True, False]) else "反面" for i in range(num_flips)]
print(*results, sep=", ")
# 试试看不加*号 print(results, sep=" ")
# 使用f-string格式化输出结果,并用逗号分隔,这种输出和上面一致
print(f"{', '.join(results)}")
print(f"实验结束,正面的次数为{results.count('正面')},反面的次数为{results.count('反面')}")
这个改进后的代码使用了 try...except
语句来捕获可能出现的异常,比如输入的不是一个整数或者输入的是一个负数。如果出现这些异常,程序会给出相应的错误提示,并让用户重新输入。此外,代码还使用了 f-string
来格式化输出的字符串,以及使用列表推导式来生成一个包含所有抛硬币结果的列表。这样可以使代码更加简洁和高效。最后,代码还打印了正面和反面出现的次数,以方便用户对结果进行分析。
try...except 语句用于捕获和处理异常。其逻辑顺序如下:
这两者的区别不大,都是使用列表推导式来生成一个包含所有抛硬币结果的列表。不过,第一种方法是直接从一个包含"正面"和"反面"的列表中随机选择一个元素,而第二种方法是先生成一个随机的布尔值,然后根据布尔值来选择"正面"或者"反面"。第一种方法可能更简单一些,第二种方法可能更接近实际的抛硬币过程。不过,从效果上来看,两者都可以得到相同的结果。
在 Python 中,下划线 _
通常用作一个临时变量名,表示一个值是被忽略的。在这个代码中,我们并不需要使用列表推导式中的循环计数器,而是只需要使用它来控制循环的次数,因此使用下划线来表示这个变量是被忽略的,只是为了满足语法要求。使用下划线作为临时变量名的好处是,它能够提高代码的可读性和可维护性,避免了使用无意义的变量名所带来的混淆和错误
当运行第一个代码时,会发生以下事情:
range(num_flips)
生成一个数字序列,其中num_flips
是你输入的抛硬币次数。这个数字序列包含从0到num_flips-1的所有整数。(_)
表示这个变量不需要。random.choice([True, False])
生成一个随机布尔值,随机地选择True或False。注意,这里使用了列表[True, False]
,而不是范围(1,10)。这是因为列表中只有两个元素,True和False,因此这里使用了布尔值作为列表元素。"正面" if random.choice([True, False]) else "反面"
,根据随机布尔值来生成"正面"或"反面"。如果随机布尔值是True,则表达式的结果是"正面";如果随机布尔值是False,则表达式的结果是"反面"。raise
是 Python 中的一种语句,用于手动引发异常。在这个例子中,当 num_flips
小于或等于零时,我们希望引发一个 ValueError
异常,以便提醒用户输入无效。使用 raise
语句可以在代码执行到这个位置时,立即引发异常并停止程序的运行。 raise
的语法如下:raise [Exception [, args [, traceback]]]
其中 Exception
是异常的类型,可以是内置的异常类型(例如 ValueError
)或自定义的异常类型。args
是一个包含异常参数的元组,可以省略。traceback
是一个可选参数,包含了异常的堆栈跟踪信息,通常不需要手动指定。
在这段语句中,as
是用来将 ValueError
异常赋值给变量 e
,这样就可以在后面的代码中使用这个变量来获取异常的详细信息。
通常情况下,我们会在异常处理中使用 as
来捕获异常并给它起一个更具描述性的名字,以便更好地理解和处理它。
{str(e)}\n
是一个 f-string 表达式,用来格式化输出字符串。{}
用于插入表达式的值,str(e)
用于将异常对象e
转换为字符串,\n
用于在字符串末尾添加一个换行符。
f-string是一种字符串格式化方式,可以在字符串中插入变量和表达式。在这个例子中,我们使用了f-string来格式化输出字符串,其中花括号内部的部分会被替换成对应变量或者表达式的值。例如,{', '.join(results)}
中的{}
表示插入一个变量,join()
方法是Python字符串对象的一个方法,它接受一个可迭代对象作为参数,将这个可迭代对象中的字符串元素连接成一个字符串,并返回这个字符串。
增加统计正面和反面的比例功能
使用 count
方法来统计列表中某个元素出现的次数,然后用 len
方法来获取列表的长度,再用除法来计算比例:
# 统计正面出现的次数
positive = results.count("正面")
# 统计反面出现的次数
negative = results.count("反面")
# 计算正面的比例
positive_ratio = positive / len(results)
# 计算反面的比例
negative_ratio = negative / len(results)
# 使用f-string格式化输出比例,并保留两位小数
print(f"正面的比例是{positive_ratio:.2f},反面的比例是{negative_ratio:.2f}")
import random
import matplotlib.pyplot as plt
while True:
try:
num_flips = int(input("请输入抛硬币的次数:"))
if num_flips <= 0:
raise ValueError("输入的次数必须是正整数")
break
except ValueError as e:
print("输入的不是一个正整数,请重新输入")
print(f"错误信息:{str(e)}\n")
print(f"开始抛{num_flips}次硬币实验:")
results = [random.choice(["正面", "反面"]) for _ in range(num_flips)]
# results = ["正面" if random.choice([True, False]) else "反面" for i in range(num_flips)]
print(*results, sep=", ")
# 试试看不加*号 print(results, sep=" ")
# 使用f-string格式化输出结果,并用逗号分隔,这种输出和上面一致
print(f"{', '.join(results)}")
# 统计正面反面出现的次数
num_heads = results.count("正面")
num_tails = num_flips - num_heads
# 计算正面反面出现的比例
ratio_heads = num_heads / num_flips
ratio_tails = num_tails / num_flips
# 也可以用len(results) = num_flips
print(f"实验结束,正面的次数为{num_heads},反面的次数为{num_tails}")
# 使用f-string格式化输出比例,并保留两位小数
print(f"实验结果中,正面的比例是{ratio_heads:.2f},反面的比例是{ratio_tails:.2f}")
# 设置中文显示
plt.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示负号
plt.rcParams["axes.unicode_minus"] = False
fig, axs = plt.subplots(3, figsize=(8, 12))
fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9, hspace=0.4, wspace=0.4)
# 绘制饼图
axs[0].pie([num_heads, num_tails], labels=["正面", "反面"], colors=["green", "red"], autopct='%1.1f%%', startangle=90)
axs[0].axis("equal")
axs[0].set_title(f"{num_flips}次硬币抛掷结果(饼图)")
# 绘制柱状图
axs[1].bar(["正面", "反面"], [num_heads, num_tails], color=["green", "red"])
axs[1].set_ylim(0, num_flips)
axs[1].set_xlabel("面向")
axs[1].set_ylabel("次数")
axs[1].set_title(f"{num_flips}次硬币抛掷结果(柱状图)")
# 绘制折线图
x_values = range(1, num_flips+1)
y_values = [results[:i].count("正面") / i for i in x_values]
axs[2].plot(x_values, y_values)
axs[2].set_ylim(0, 1)
axs[2].set_xlabel("抛掷次数")
axs[2].set_ylabel("正面比例")
axs[2].set_title(f"{num_flips}次硬币抛掷结果(折线图)")
plt.show()
axs[0].pie([num_heads, num_tails], labels=["正面", "反面"], autopct='%1.1f%%', startangle=90)
axs[0].axis("equal")
axs[0].set_title(f"{num_flips}次硬币抛掷结果(饼图)")
axs[0]
表示第一个子图;[num_heads, num_tails]
是数据,labels=["正面", "反面"]
是标签;autopct='%1.1f%%'
表示设置百分比格式;autopct
是一个用来标记饼图每一块的数值的参数。它可以是一个字符串或者一个函数。如果是一个字符串,它必须是一个格式化字符串,用来显示每一块的百分比。如果是一个函数,它必须接受一个数值作为输入,并返回一个字符串作为输出。'%1.1 f%%'
是一个格式化字符串,它的意思是显示一位小数的浮点数,并在后面加上百分号。例如,如果一块的百分比是 12.34%,那么它会显示为'12.3%'。'%1.1f%%'
中的三个百分号的作用如下:
'%1.1f%%'
中的 1.1
是用来表示浮点数的精度的。它的意思是显示一位整数和一位小数。如果想要显示两位整数和两位小数,你可以写成'%2.2f%%'
。startangle=90
表示设置起始角度为90度axis("equal")
表示设置坐标轴相等,保证饼图是圆形set_title(f"{num_flips}次硬币抛掷结果(饼图)")
表示设置子图标题axs[1].bar(["正面", "反面"], [num_heads, num_tails])
axs[1].set_ylim(0, num_flips)
axs[1].set_xlabel("面向")
axs[1].set_ylabel("次数")
axs[1].set_title(f"{num_flips}次硬币抛掷结果(柱状图)")
axs[1]
表示第二个子图bar
表示绘制柱状图, ["正面", "反面"]
是标签,[num_heads, num_tails]
是数据set_ylim(0, num_flips)
表示设置 y 轴范围,y 轴从 0 开始,最大值为 num_flips
set_xlabel("面向")
表示设置 x 轴标签为 "面向"
set_ylabel("次数")
表示设置 y 轴标签为 "次数"
set_title(f"{num_flips}次硬币抛掷结果(柱状图)")
表示设置子图标题x_values = range(1, num_flips+1)
y_values = [results[:i].count("正面") / i for i in x_values]
axs[2].plot(x_values, y_values)
axs[2].set_ylim(0, 1)
axs[2].set_xlabel("抛掷次数")
axs[2].set_ylabel("正面比例")
axs[2].set_title(f"{num_flips}次硬币抛掷结果(折线图)")
num_flips
的数字。y_values
中。
x_values
)生成一个新的列表(y_values
),并对每个元素进行一定的操作或过滤。[expression for item in iterable if condition]
,其中,expression
是对每个 item
进行的操作,iterable
是一个可迭代的对象,如列表、元组、字符串等,condition
是一个可选的过滤条件,只有满足条件的 item
才会被处理。expression
是 results[:i].count("正面") / i
,它的意思是对结果列表(results
)进行切片,取前 i 个元素,然后计算其中"正面"的个数,并除以 i,得到正面的比例。iterable
是 x_values
,它是一个从1到 num_flips
的数字序列。没有使用过滤条件。results[:i]
是一个列表切片(list slicing)的语法。
results
)中取出一部分元素,形成一个新的列表。list[start:stop:step]
start
是切片的起始位置,stop
是切片的结束位置(不包含),step
是切片的步长。如果省略 start
,则默认为0,表示从列表的第一个元素开始。如果省略 stop
,则默认为列表的长度,表示到列表的最后一个元素结束。如果省略 step
,则默认为1,表示每个元素都取。results[:i]
省略了 start
和 step
,只指定了 stop
为 i,所以它的意思是从结果列表(results
)中取出从第一个元素到第 i 个元素(不包含)之间的所有元素,形成一个新的列表。results[1:-1]
。这里,start
是1,表示从列表的第二个元素开始(因为列表的索引是从0开始的)。stop
是-1,表示到列表的倒数第一个元素的前一个元素结束(因为负数表示从列表的末尾往前数)。step
省略了,表示每个元素都取。results[::2]
。这里,start
和 stop
都省略了,表示从列表的第一个元素到最后一个元素。step
是2,表示每隔两个元素取一个。results[::-1]
。这里,start
和stop
都省略了,表示从列表的第一个元素到最后一个元素。step
是-1,表示从列表的末尾往前数,每个元素都取。axs[2].plot
绘制折线图,将数字序列 x_values
和正面比例 y_values
作为参数传入。axs[2].set_ylim
设置 y 轴的范围,最小为0,最大为1。axs[2].set_xlabel
和 axs[2].set_ylabel
方法分别设置 x 轴和 y 轴的标签。axs[2].set_title
设置图表的标题你可以通过设置 plot
方法的一些参数来改变折线图的样式。例如,你可以设置 color
参数来改变线条的颜色,设置 linestyle
参数来改变线条的样式,设置 marker
参数来改变数据点的标记,设置 linewidth
参数来改变线条的宽度等。
你也可以使用不同的样式表(style sheet)来改变整个图表的风格。样式表是一组预定义的样式参数,可以让你快速地切换不同的主题和色彩。Matplotlib提供了一些内置的样式表,你可以使用plt.style.use
方法来选择一个样式表。
例如,你可以使用这样的代码来改变折线图的样式:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
# 使用ggplot样式表
plt.style.use('ggplot')
# 绘制折线图,并设置颜色为绿色,线条样式为虚线,数据点标记为圆圈,线条宽度为2
plt.plot(x, y, color='green', linestyle='--', marker='o', linewidth=2)
plt.show()
可以使用这样的代码来添加图例和网格线:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
# 绘制两条折线,并设置标签
plt.plot(x, y1, label='sin')
plt.plot(x, y2, label='cos')
# 添加图例,并设置位置为右上角
plt.legend(loc='upper right')
# 添加网格线,并设置颜色为灰色,线条样式为虚线
plt.grid(color='gray', linestyle='--')
plt.show()
fig, axs = plt.subplots(3, figsize=(8, 12))
fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9, hspace=0.4, wspace=0.4)
fig, axs = plt.subplots(3, figsize=(8, 12))
是一种用于创建一个图形和三个子图的快捷方式。
每个子图都有一个 axs
对象,可以用来绘制数据或调整样式。
调整子图之间的间距,可以使用 fig.tight_layout()
或者 fig.subplots_adjust()
方法。
这些方法可以根据子图的大小和标签自动或手动地调整间距,以避免重叠。
hspace
和 wspace
是用来调整子图之间的水平和垂直间距的参数。
它们的值是子图的宽度或高度的百分比,如果想要让子图之间的水平间距更大,可以设置 wspace=0.6
或更高的值。
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
fig, axs = plt.subplots(3, figsize=(8, 12))
fig.suptitle('Three subplots with different labels')
for i in range(3):
axs[i].plot(x, y)
axs[i].set_xlabel(f'x{i}')
axs[i].set_ylabel(f'y{i}')
# Adjust the spacing between subplots
fig.tight_layout()
# Or you can use fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9, hspace=0.4, wspace=0.4)
plt.show()
原文链接:https://www.cnblogs.com/taurusxw/p/17311002.html
本文链接:http://task.lmcjl.com/news/15169.html