tf.train.Saver
对象,其中可以通过save()
函数指定保存路径和文件名,保存的格式通常为.ckpt
tf.train.import_meta_graph()
函数导入之前模型的结构,再通过saver.restore()
函数加载之前训练的参数以下是示例代码:
import tensorflow as tf
#定义一个简单的模型
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
#定义损失函数和训练操作
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
saver = tf.train.Saver()
#保存模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_xs, batch_ys = get_batch() #替换成读取数据的代码
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
saver.save(sess, 'model.ckpt')
#加载模型
with tf.Session() as sess:
saver.restore(sess, 'model.ckpt')
print('Model loaded successfully')
tf.train.Saver
的var_list
参数手动指定需要读取和存储的变量tf.compat.v1.train.Saver()
代替tf.train.Saver()
import tensorflow as tf
#定义一个简单的模型
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
#定义损失函数和训练操作
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
saver = tf.compat.v1.train.Saver()
#保存模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_xs, batch_ys = get_batch() #替换成读取数据的代码
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
saver.save(sess, 'model.ckpt')
#加载模型
with tf.Session() as sess:
saver.restore(sess, 'model.ckpt')
print('Model loaded successfully')
以上是基本的模型参数的保存与加载的攻略过程,可以根据具体场景和要求进行优化和完善。同时需要注意版本的兼容性问题,保证模型能够成功地保存和加载。
本文链接:http://task.lmcjl.com/news/5023.html